Fachartikel

Arterial, venous, and cerebrospinal fluid flow: Simultaneous assessment with Bayesian multipoint velocity-encoded MR Imaging

Purpose: To measure arterial, venous, and cerebrospinal fluid (CSF) velocities simultaneously by using Bayesian multipoint velocity-encoded magnetic resonance (MR) imaging and to compare interacquisition reproducibility relative to that of standard phase-contrast MR imaging for sequential measurements of arterial, venous, and CSF velocities.

Materials and Methods: This study was approved by the local ethics committee, and informed consent was obtained from all subjects. Simultaneous measurement of blood and CSF flow was performed at the C1-C2 level in 10 healthy subjects (mean age, 24.4 years ± 2.7; five men, five women) by using accelerated Bayesian multipoint velocity-encoded MR imaging. Data were compared with those obtained from two separate conventional phase-contrast MR imaging acquisitions, one optimized for arterial and venous blood flow (velocity encoding range, ±50 cm/sec) and the other optimized for CSF flow (velocity encoding range, ±10 cm/sec), with an imaging time of approximately 2 minutes each. Data acquisition was repeated six times. Intraclass correlation coefficient (ICC) and linear regression were used to quantify interacquisition reproducibility.

Results: There was no significant difference in arterial blood flow measured with Bayesian multipoint velocity-encoded MR imaging and that measured with phase-contrast MR imaging (mean ICC, 0.96 ± 0.03 vs 0.97 ± 0.02, respectively). Likewise, there was no significant difference between CSF flow measured with Bayesian multipoint velocity-encoded MR imaging and that measured with phase-contrast MR imaging (mean ICC, 0.97 ± 0.02 vs 0.96 ± 0.05, respectively). For venous blood flow, the ICC with Bayesian multipoint MR imaging was significantly larger than that with conventional phase-contrast MR imaging (mean, 0.75 ± 0.23 vs 0.65 ± 0.26, respectively; P = .016).

Conclusion: Bayesian multipoint velocity-encoded MR imaging allows for simultaneous assessment of fast and slow flows in arterial, venous, and CSF lumina in a single acquisition. It eliminates the need for vessel-dependent adjustment of the velocity-encoding range, as required for conventional sequential phase-contrast MR imaging measurements.

Download Article

The .pdf version of this article is for internal use only. Do not proceed unless you have the necessary rights.

Proceed Cancel

Reference

V. Knobloch, C. Binter, V. Kurtcuoglu, S. Kozerke. Radiology, 270(2), 566 - 573 (2014). doi: 10.1148/radiol.13130840